
NASA Contractor Report 181742

The CSM Testbed Matrix Processors

Internal Logic and Dataflow Descriptions

(NASA-CE-1817_2) _HE CSH _EE_EEE BAT_IX
_[GLEESL_E IN_EE_£ LCGIC A_£ £A_AFLOW
_ESC_IP21CN_ (tcckhe_d _i_i]es and Space
Cc.) 91 F CSCL 20K

G3/39

N89-1qqTq

Unclas
0165G76

Marc E. Regelbrugge and Mary A. Wright

Lockheed Missiles and Space Company, Inc.

Palo Alto, California

Contract NAS1-18444

December 1988

[WL A
Nahon_tl Aoronat_/f_ :_,, ,rid

Langley Research Center
Hampton. Vlrgznla2"}665 522!_;





1.0

The Computational Structural Mechanics Testbed Matrix Processors

Internal Logic and Dataflow Descriptions

Introduction

1.1 Overview

1.2 Definitions and Notations

1.3 Testbed Sparse Matrix Data Structure

2.0 System Matrix Processors

3.0

4.0

2.1 TOPO

2.2 K

2.3 INV

2.4 SSOL

Utility Processors

3.1 AUS

References





Introduction

1.0 Introduction

This report constitutes the finalreport for subtask i of Task 5 of NASA Contract NASI-

18444, Computational Structural Mechanics (CSM) Research. This report contains a

detailed description of the _coded" workings of selected CSM Testbed matrix processors

(i.e.,TOPO, K, INV, SSOL) and of the arithmetic utilityprocessor AUS. These proces-

sors and the current sparse matrix data structures are studied and documented. Items

examined include: detailsof the data structures,interdependence of data structures,data-

blocking logic in the data structures,processor data flow and architecture,and processor

algorithmic logicflow.
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Introduction Overview

1.1 Overview

This document describes details of the coded workings of the CSM Testbed matrix

processors TOPO, K, INV, SSOL and the utility processor AUS. The purpose of this

description is twofold:

1) To provide a clear description of the internal logic and data flows and
of the user and database interface requirements of these processors so

as to enable the straightforward and accurate modification of these

processors to enhance the analytical capabilities of the Testbed.

2) To lend insight into the necessary functionality and key architectural

features of these processors in order to guide future development

of matrix-algebra oriented software along functionally rational and

utility-oriented lines.

The centerpiece of the present description is the set of logic flowcharts developed for key

subroutines of each of the system matrix processors TOPO, K, INV, SSOL and AUS. These

charts, along with commented FORTRAN source code also produced under this CSM activity,

allow a knowledgeable code developer to deduce the logic of the documented routine and to

locate quickly particular sections of code either to be modified or to serve as examples for

further explanation. The reader should make a special note of the symbiotic relationship

between the logic flowcharts and the commented FORTRAN source code, i.e., both need to be

reviewed together in any serious study of these modules' internal workings. This is because

the detailsof FORTRAN programming practicesare frequently best understood upon careful

study ofthe code itself.Many of these detailsare simply too intricateand specializedto be

well described by flowcharts or technicalEnglish. The programming described here isnot

for beginners. On the other hand, the logicflowcharts provide a more general view of the

processor modules from which the reader may deduce modules' operations in the context of

the architectureof the entireprocessor. The logicflowchartsallow one to examine program

logicflow on a levelabove that which ispossible in study of a one-page program listing.

Each matrix processor described in Chapter 2 isalsofullydocumented as to processor

and/or subprocessor name, function, user inputs (RESET and other commands), input

and output database datasets,and internalcore allocationpractices.In addition,the data

storage structure of the Testbed sparse matrix isdocumented in §1.3.The interestedreader

isreferredto the referenceslistedin §4.0for additional information. We wish to note that

the activitiesundertaken to provide the present descriptionwere greatly simplifiedby the

prior effortexpended in the production of the referenced documents (§4.0).
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Introduction Definitions and Notation

1.2 Definitions and Notation

The following key is helpful in the interpretation of the logic flowcharts.

lowercase

UPPERCASE

BOLDFACE

general information

user commands (e.g., RESET. INLIB) or generic

entities (e.g., KMAP buffer)

FORTRAN-identifiable quantities (e.g., variable

names, subroutine names, statement labels, etc.)

SLANTED

* (asterisk)

- database entities. Input datasets appear above

the dataflow lines whereas output datasets ap-

pear below the dataflow lines

- generic wild-card match

In the accompanying text, FORTRAN-identifiable quantities appear in typewriter

font. Like many FORTRAN compilers, no distinctionisexpressly drawn between subroutine,

function,and variable names. Common block names axe written with leading and trailing

slashes,like/THIS/. In keeping with FORTRAN-IV conventions, and since the vast majority

of the source code described herein appears in uppercase, FORTRAN entitiesappear only in

uppercase.
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1.3 Testbed Sparse Matrix Data Structure

This section describes the data storage structures of the Testbed sparse matrix.

Throughout this section, an example model depicted in figure 1 will be referenced. This

example is a simple finite-element model comprising five beam elements, two triangular

plate elements and one quadrilateral plate element. For purposes of illustration, all six

nodes are assumed to have six active degrees-of-freedom (d.o.f.), providing a total of 36

d.o.f, in the entire model. The nodal d.o.f, are numbered in the conventional sense; one

through six being associated with translational motions in the z, y, and z directions and

rotations about the x, y, and z axes, respectively. Note that the d.o.f, associated with all

translations at node 1 and with y and z translations at node 4 are suppressed by support

boundary conditions.

Example Problem Model:

6 nodes

6 d.o.f./node

5

Element Connected
# type Nodes

1 beam 1, 2

2 beam 2, 3

3 beam 3, 4

4 beam 2, 5

5 beam 3, 6

6 plate i, 2, 5

7 plate 3, 4, 6

8 plate 2, 3, 6, 5

X

Figure 1 Example Finite Element Model.

The Testbed sparse matrix data structure is a nodal-block oriented scheme for storing

the elements of the upper triangle of a sparse, symmetric system matrix. The Testbed

sparse matrix is stored in one of two forms depending on whether the matrix has been

factored. Figure 2 shows the logical structure of the unfactored Testbed sparse matrix

using the interrelationships of the nodal-block submatrices for the example problem. Note

that each box like

Revised 1988/11/7 CSM Testbed Matrix Processors 1.3- 1
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I (1.2) I

denotes a 6 by 6 nodal-block submatrix connected to the two nodes listedin parentheses

insidethe box. In the example above, the block indicated contains the coupling contribu-

tions from nodes 1 and 2. In the example problem, elements 1 and 6 contribute to this

nodal-block submatrix (1.2). In the example matrix of figure2, the only block whose

terms are present in the factored matrix but absent in the unfactored matrix is marked

with a large _x."

Z

m

Key:

(i,I) (1,2)

(2,2) (2,3)

(3,3) (3,4)

(4,4)

(1,5)

(3,5) (3,6)

(4,6)

symmetric

(5,5) (5,6)

(6,6)

(I, 5) I
Indicates 6 by 6 nodal-block submatrices. In
the case at left, the submatrix due to clement
connectivity between nodes 1 and 5 is depicted.

Indicates nodal-block submatrix that is not present
in the model stiffness, but will f'tU in during
factoring.

Figure 2 Sparse Matrix Nodal-Block Structure.

Both factored and unfactored Testbed sparse matrices are stored in a blocked, parti-

tioned record scheme. Individual records are of constant length and contain both indexing

data and matrix value data. The indexing data are usefulonly as integer type, but are

stored physically in the unfactored matrix structure in the same datum precision as the
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terms of the matrix itself. In the factored matrix structure, however, the indexing data

are stored as integer type regardless of the datum precision of the matrix values. The

record partitions differ in detail between the factored and unfactored matrix structures,

owing primarily to the incorporation of constraint (d.o.f. suppression) information into

the factored matrix structure.

The record partitioning scheme and record contents for unfactored stiffness matrix of

the figure 1 example problem are presented in figures 3(a) and 3(b). To make the substance

of figure 3(b) more illustrative, a record length (LREC) of 384 words has been chosen.

The fundamental unit of information in the record partitioning scheme is the nodal-block

subrecord, which comprises nodal index information and all nodal-block submatrices that

contribute to the rows assigned to the diagonal-block node in the upper triangle of the

system matrix. The first node listed in the nodal index is referred to as the diagonal-block

node since its nodal block appears on the diagonal of the system matrix. The nodal index

information contains the number of nodal-block submatrices present in the subrecord (for

the current diagonal-block node) and the node numbers associated with the columns of

these nodal-block submatrices. The size of each nodal-block submatrix is the square of the

number of nodal d.o.f, not constrained on the START card in the TAB Testbed modeling

processor.

Note that the records are partitioned so that complete nodal subrecords are contained

within one record, i.e., the matrix information associated with a nodal-block row of the

matrix is not allowed to span record boundaries. Thus, the record size is used only as a

data manager parameter, and transmits no specific information about the matrix itself, or

how the record partitions are to be interpreted. All interpretive information is encountered

sequentially as the record is processed from the first word through the LREC th word.

The record partitioning scheme and record contents for the factored stiffness matrix

of the figure 1 example problem are presented in figures 4(a) and 4(b). For purposes of

illustration, a record length (LRA) of 384 words was chosen for the detail of the record

contents in figure 4(b), and only the first record is shown. The subscripts of the D -1 and

L terms in figure 4(b) refer to d.o.f, numbers, assigned sequentially in groups of six to
each node.

As in the unfactored matrix structure, nodal subrecords in the factored matrix are

not allowed to span record boundaries. Unlike the unfactored matrix structure, constraint

data associated with nodal d.o.f, suppressions is included in the matrix data records. The

factored matrix rows corresponding to suppressed d.o.f, are not included in the data. A

map is provided at the beginning of the nodal subrecord to indicate the active d.o.f., as

an indexed subset (1,..., n) of the d.o.f, not constrained on the START card in TAB, for

the current diagonal node. An interesting observation is that the factored matrix data

cannot be decoded completely without additional information about the number of d.o.f.

per node in the finite element model, and which nodal d.o.f, are potentially active. In the

Testbed, this information is obtained from a modeling summary dataset JDF1.BTAB.1.8.
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Data Records: n records of length LREC words.

I}

nl i
V'_ LREC _'3

Typical Record Structure: /

/ _ _/ _nullfi11

header X// V--]
_'_ nodal index nodal-block submatrices

Subrecord Key Contents

header

nodal index

nodal-block [_
submatrices

Number of nodal-block rows in the upper

triangle of the system matrix contained
in this record.

Number of nodes contributing to the
nodal-block submatrices in this row and

the numbers of these nodes.

6 by 6 submatrices of matrix coefficients

in the rows of the upper triangle of the

matrix connected to the nodes listed in

the nodal index.

Figure 3(a) Record Partitioning Scheme for

Testbed Sparse Matrix.
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Record i:

01 51 1131

.._2.--_._,-////////y///,F//,:_Tll[i;:ii;_;:;;;_'_;:iii;,;;;l;;iii;;r//////2"////<._,'{_;;;_:[_;i;

188 i 3371

(2,3) 4 3 4 5 6 (3,3) (3, 4) (3,5) (3, 6)

384 t

null fill ]

Record contents:

3 nodal-block rows

9 nodal-block submatrices (36 wds. ca.)

337 words used (47 wds. null fill)

Record 2:

01 41 761 1511

Subrecord Key

header

nodal index

nodal-block

submatrices

Number of nodal-block rows in the upper

triangle of the system matrix contained

in this record.

Number of nodes contributing to the

nodal-block submatrices in this row and

the numbers of these nodes.

6 by 6 submatrices of matrix coefficients.

Figure 3(b) Sparse Matrix Record Contents for Example Problem.
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Data Records: n records of length LRA words.

C_ LRA

Typical Record Structure: /
I-4 TD _ _ /

ii--.I}"

pointers constraint dat"a -factored matrix row values

& nodal index

Subrecord Key Contents

header _._

pointers

nodal index

factored row [_
nodal- block

submatrices

Number of nodal-block subrecords in

thisrecord.

Physical (word) pointers to start of each

subrecord in this record.

Number of active d.o.f, and d.o.f, indices

for current node, number of nodal-

block row submatrices to follow and the

numbers of the nodes associated with

these row submatrices.

Nodal-blocks of rows of terms in the

upper triangle of the factored matrix for
each active d.o.f, of the current node.

Figure 4(a) Record Partitioning Scheme for
Testbed Factored Matrix.
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I

.! .!
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384

fill

• - Denotes an unused, subdiagonal entry.

null

Figure 4(b) Record Contents for Example Problem's

Testbed Factored Matrix.
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As an aside, one should note that the rather elaborate record partitioning schemes

used for the Testbed matrices are byproducts of the architecture of the underlying data

management system (DAL). Three DAL features in particular are responsible for the

original Testbed design choices to place indexing and matrix values data side-by-side in

the data records and to break the matrix storage into fixed-length segments (i._., records).

These are:

1) DAL is a singly indexed hierarchical data manager, so to group data

in logically related sets frequently requires the use of inhomogenous

data records within a single dataset.

2) DAL handles datasets containing Foced-length records only. Different

records in the same dataset cannot have different lengths.

3) DAL is sector (physical disk block) addressable at the finest granular-

ity. Thus, it is required that integral numbers of disk blocks be read

or written through DAL. For practical core memory limitations and

the most effcient use of disk space, the large matrices are blocked

into records that are sized to integral disk block sizes.

The pertinent observation to be made at this point is that the structure of matrix data is

influenced not only by the structure of the matrix itself (in terms of zero and nonzero coeffi-

cients), but also by the operational characteristics of auxiliary data management software.

Herein lies the most intimate connection between the algebraic and data descriptions of

the system matrix.

1.3- 8 CSM Testbed Matrix Processors Revised 1988/11/7
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2.0 System Matrix Processors

The four processors described in this Chapter are associated with assembly, factorizvttion

and solution of sparse-matrix format system matrix equations. These processors are:

TOPO - Element Topology Analyzer. Processor TOPO analyzes element intercon-

nection topology and creates datasets which guide the assembly and the factorization

of system matrices.

If, - The System Stiffness Matrix Assembler. Processor K assembles unconstrained

system matrices in the standard sparse-matrix format. If the appropriate elemental

arrays have been formed, processor K may be used to assemble either the system

material stiffness or the system geometric stiffness matrix.

• INV - Sparse-Matrix Format Factoring Processor. Processor INV factors the as-

sembled sparse-matrix format system matrices.

$$OL - Static Solution. Processor SSOL performs forward reduction and back sub-

stitution using the factored system matrix, to obtain the static displacements and

reactions due to applied loads. Loads are combined from both processor EQNF and

processor AUS.

Revised 1988/11/8 CSM Testbed Matrix Processors 2.0- 1
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2.1 Processor TOPO

2.1.1 GENERAL DESCRIPTION

Processor TOPO performs topology analysis and constructs the maps used in the

assembly and factorization of Testbed sparse format system matrices.

The system topology maps, KMAP..nsubs.ksize and AMAP..ic2.isize are designed to

facilitate system matrix assembly (using processor K) and factorization (using processor

INV). TOPO handles much of the local memory management for subsequent executions

of K and INV and communicates this information using the blocked, map data structures.

As such, the maps are purely internal data, and are not normally for Testbed user perusal.

2.1.2 PROCESSOR SYNTAX

This processor follows Testbed command syntax and data management conventions

as described in Reference 2.

2.1.2.1 Processor Resets

Argument Default Meaning

BLIB 1

LRKMAP 896

LRAMAP 1792

LR7 896

MAXSUB 1400

ILMAX 0

LAPROX 0

SA 0

PRTKMAP 0

P RTAMAP 0

PRT7 0

HLIB 1

ILIB 1

Input library number

Length of KMAP..nsubs.ksize records

Length of AMAP..ic2.isize records

Length of records in scratch library number 26

Max. number of submatrices used during any stage of

assembly or factoring

Max. nodal connectivity allowed. If not reset, it will be

calculated based on MAXSUB

Estimated number of elements. If not reset, it will be

calculated.

Diagnostic print flag - print almost everything

KMAP..nsubs.ksize print flag

AMAP..ic2.isizeprint flag

Print scratch librarynumber 26 records

K MAP..nsubs.ksize destination library

AMAP..ic2.isizedestination library

2.1.3 SUBPROCESSORS AND COMMANDS

Not applicable.

Revised 1988/11/8 CSM Testbed Matrix Processors 2.1- 1
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2.1.4 PROCESSOR DATA INTERFACE

2.1.4.1 Processor Input Datasets

JSEQ.BTAB.2.17 (optional)
ELTS.NAME

D EF.xxxx. ity pe. nnod

xxxx.EFIL.itype.nnod

- xxxx is the element type name

- kype is the element type number

- nnod is the number of joints per element

2.1.4.2 Processor Output Datasets

• KMAP..nsubs.ksize

- nsubs is total number of nodal submatrices in the

K.SPAR.jdf2

- ksize is the minimum required size (in submatrix

units) of the assembly workspace (kslze less than

MAXSUB)

• AMAP..ic2.isize

- ic2 is a measure of the number of submatrix com-

putations needed to factor the matrix

- isize is the number of submatrices needed in core

during matrix factoring

2.1.4.3 Processor Scratch Libraries

• Two workspace libraries (default: L25 & L26)

2.1.5 PROCESSOR LOGIC FLOW

Figures 5 through 9 contain flowchart diagrams for the TOPO top-level subrou-

tire, TOPOEX, which directs TOPO computations, subroutine ELSOKT which sorts ele-

ment connectivity data into scratch data structures, and subroutines KMAP and PRECON

which produce the system matrix map (KMAP..nsubs.ksize) and the factored matrix map

(AMAP..ic2.isize), respectively. Other supporting subroutines, ELCON and ELSUB serve to

manage working arrays and pointers for nodal connectivity mapping (CONROW, CONECT),

and allocation pointers and block availability arrays (BLOCK, AVAIL) for the submatrix-

block assembly operation. These arrays are volatile local memory and are used on a

demand basis. ELCON manages CONROWand CONECT. ELSUB manages BLOCK and AVAIL.

The first task undertaken in TOPO is to sort elements into groups associated with each

node in the problem. Elements are assigned to nodal groups if they reference the given node

and at least one higher-numbered node (in the sense of the elimination sequence). This

sorting is accomplished in ELSORT in two phases: a coarse sort and a fine sort. The coarse
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sort stores certain element information into records in scratch file L25 (NU6) associated

with the lowest-referenced element node. These scratch records are processed in element

order, and are random with respect to nodal order. They are collected into nodal order in

the final sort and written to a blocked data structure on library L26 (NU7).

The only essential differences between KMAP..nsubs.ksize and AMAP..ic2.isize, once

the nodal connectivity has been determined, are that KMAP..nsubs.ksize holds some ele-

ment data and that the AMAP..ic2.isize must account for nodal blocks which fill-in during

factoring. The mapping logic in subroutines KMAP and PRECON is virtually identical with

the exception of the DO 1300 loop to account for fill-in blocks in PRECON.
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I
p r ocess

RESET

commands

( TOPOLD )

I

i Build

the matrix

maps

( TOPOEX )

1
RETURN

Figure 5 TOPO main program logic flowchart.
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ORIGINAL PAGE IS

I n'_':'tz" I3Fconstruct POOR QUAUTY

resequenctng I JSE_I. BTAB.2.17 t ,,'_ T t

/ E,,s.,_E __ ! :ii

,,.,.oi i] OEF.,,,,,. ,p . _

' i
read element def'n

and calculate

NETOT, NAXNN

and LRECL.

calcu]ate

NETOT, MAXNN

and LRECL ustng

assumed parametgrs

1
set or update

core zl]ocatlon

parameters

LP3, NBLOK$, JPB

I

I sort elements

according to

l_est-referenced

node ( EL$ORT )

!!

|
|

I °_'_'"'"_'P*'_'°°" !
&

I :txxx. EFIL f ¢ype_nnod

Scratch

Figure 6 TOPOEX logic flowchart.
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T
loop over ma_s

DO 3888 I45-1.2

to construct

;4;_MAPand ;_AP.

I45-2 t_P)

ORIG,I.NAL PAGE IS

OF POOR QUALtTY

I tntti,]tze (
map dataset I

/_r.4P or ,4.4f,4PI

set or u_date

core allocation

par_netsrs
ILMAX, MAXCON, NAXSUB

LT_, LR_

end 3BBB too0

cal I ma;_per "

routl_e

t?( 145 - 1 ) if( 145 - 2 )

call KD_6.P call PRECON I i_v.AP..nsubs.ksfze

(?orm _P) (?orm ANAP) I ANAP. .fc2. isize

@.i

1

RETURN J

Figure 6 Concluded.
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/\

3852

loop

",__.

initialize counters

and set up scratch
file NU5

t loop over all element types IDO 3852 ITY - 1, NTYP2

I access the element datasetvta call to DAL

calculate parameters:

LTYPE element type
NNOOE3 nodes/element

NELTS I elements of this type

LRECL length of DEF. " record
HR # DEF. • records

loop over element definition records

DO 38511REC - l, NR

L

read-in element definition record

( RIO )

loop Over elements in record

DO 385t IEL - 1, HEL3

__[
l load LDEF array

T
deto_ine lowest norle attac_ed to

this element and move LDEF

. xxxx. i Cype. nnod=,

!

_H
14i

===!ii

_ OEP.xxxx. ftyp..nnod _r_

tO this noCe's element buffer in KAC

3@5t

loop

Figure 7 ELSORT logic flowchart.
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7R 2_

3852 3851

]oop loop

end 3851 locp?'--end 3852 loop

1oop_through eli.

buffer blocks to clear

them out to ecratc_ file

DO 34B8 N - 1, NBLOK$

end 3490 loop J_

invert resequencing

arrty in 3$EQ

/
dump eli. buffer

block from KAC to

scratch file.

save record number

in ISECT array,

( OUTZ )

/
dump slt. buffer

block from KACto

scratch fili.

save record number

in IeECT array.

( OUTZ )

LAPROX too small(

print error message,

increment IFAIL

)

LAPROX too small! [
print error message,

increment IFAIL

print coarse i
sort statistics

if IPSA set.

loop over all element

buffer blocks

O0 4488 N = 1, NBLOKS

I

I read-in all dumped data forthis block ( RRINZ )

l calcu]ate number of elements
and noOes in this block

( variaOlee NELS and JpR)

ORIGINAL PAGE IS

OF POOR QUALITY

Figure 7 Continued.
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Of Pu,,...,,< QLiALITY

7

4400

loop set Io_est-referenced

node for each element

to be relative to this

element-buffer block

(2200 loop )

__ loop over nodes in this block I

i

DO 4888 J - l, _PB I

increment number of nodes

in this record and store

the node number and nbmber

of connected elements in

the output buffer KFINAL

end 4888 loop J

I loop over elements to move I
element data tnto KFINALarray

(42BB loop )

I

_rlte-out records forthis block ( OUTZ )

I
I.oo.. oooI

re-invert resequenctng

array OSEQ

I
print statistics j

J accumulator size

insufficient I

print error message

and set failure

flag IFAIL

I

I RETURNI

Figure 7 Concluded.
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1588

looo
P

I Initialize ]I

loop over all nodes

DO 1588 ISTAGE=I,JTJ

1
get next /

block I .......

if required |
i

t
locate open slot tn

nodal connectivity

array CONECT and

set access pointer

in CONROW.

( £LCON )

I
set workspace potnter

to node diagonal

submatrfx block in

BLOCK. ( ELSUB )

,.

calculate lq_P

space req'd fo_

current node

Incr_ent I

?ailurI flag I

_$ IFAIL J

1
[ RETURN J

'x./

)

I
flush Current

record (RIO)

aria Sit-up

a ne_ record

}

OF. pOO_- _v__?.+.LIT_

Figure 8 KMAP logic flowchart.
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1588

loop

1688

loop

7_

56BB

loop

7_

55eB

loop

7_

"-F-

I update _AP record

I parameters and set
I start of this node's

I data in K_IAP record.

• I
loop over elements

sorted to current node

DO 5BBB 3EL-1,LRNG

I
store connectivity for

this element and move

element data NODES,

LTYPE, NSE, E'I"YPE,

NSCT and ISCT

to H]_IAPrecord buffer

i
loop over connected nodes

DO 58Be N-1,NNODE$

I
locate open slot in

nodal connectivity

array CONECT and

set access pointer

in CONROW.

( ELCON )

I

set _orkspace pointer 1

to node diagonal

su_matrix block in

BLOCK. ( ELSUB )

1.oo.-,oool
t

double loop over

connected nodes

DO 55BB NCOL-1,NNODES

00 55BB NROW-t,NCOL

I
I set workspace pointers

for element off-diagonal

sui:xnatrixblocks in

BLOCK. ( ELSUB )

in EXCONif an

overflow occurs in

the suOmatrix map

Figure 8 Continued.
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loop
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loop

T

_ovs BLOCKdata
to NAP area in

tq_AP buffer

I

I,oo_°.,oooI
1

move CONRNG

to K_U_P buffer

I

re-order CONECT l
and BLOCK arrsye

to rsflsct JSEO

J

move CONECTand 1
BLOCK arrays to

KJ_AP record buffer

_?" flush thts Y4_AP

l record to file

via Rib

J

Incrwnsnt

statlstlcs

counters

1
rsle_ss space

used for this

node in BLOCK

array

1
f'°°'°'_'°°°I

RETURN

_su_

J K_P..nsuas.ks _zu ii

U

Figure 8 Concluded.
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16BO

looo

Initialize ]

j loop over all nodes ]O0 IBBB IeTAGE=I,JT

get Next

sorted-element

block

if required

1
locate open slot In

nodal connectivlty

array CONECT and

set access polnter

tn CONROW.

( ELCON )

1
set workspace pointer

to node dlagonal
submatrix block in

BLOCK. ( ELSUB )

ml
calculate _P

space req'd for

current node

|ncr@ment I

failure flag I

IFAIL I

I
i RETURN I

_"_tt into curr_

record

me I
flush current

record (RIO)

and set-up

a new record

1

A@IAP. . it2. fslze

Figure 9 PRECON logic flowchart.
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1688

I aop

1508

looo

5888

loop

"T-
update ANAP record

parameters and set

s_art of this node's

data in AffiAP record

t
i

loop over el mnonts
} sorted to current node

DO 5588 JEL=I,LRNG
[

I

store connectivity for 1th|s elment

I
loop over connected nodes

DO 5888 N-I,NNOOE$

l
locate open slot in

nodal connectivity
Lrray CONECT and

set access po|nter

in CONROff.

( ELCON )

I
(SET. _orkspace polnlsr

I to node dtagonaI
I submatrix block tn

I BLOCK. ( ELSU6 )

I
I.°o..,oo°1

double loop over

connected nodes

DO 5588 NCOL-1,NNOOES

DO 5588 NRDW-1,NCOL

}
r set uorkspacs pointers 1

Jfor element off-di&gonalt

I suiomatr'x blocks tn I

i BLOCK, ( ELSUB ) I

I, l.oo
[

lend 50881oop 1

J
I in EXCONif an

ovsrflotu oCCurs tn

the subma_rix map

Figure 9 Continued.
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lOgO

I bop

lOge

loop

-T-
move CONRNG

to _J_AP buffer

I
re-order CONECT

and BLOCK arrays

to reflect .ISEQ

I

I move CONECT and
first part of BLOCK

arrays to /_4t_pbuffer

I
double loop over

connected nodes

00 1388 L-Z,ILIMIT

O0 1388 NmL,ILIMIT

I I

I set uorkspace pointers

for element off-dlagonal

and flll-in sub_atrlx

blocks in BLOCK

( ELSUB )

I

I graneferBLOCK data Ito _P buffer

)
i.o°, .,oooI

T 1;05 flush this nAP
record to file

via RI(1

statistics l

counters

I

release space used for

thls node in BLOCK array

1
Iooo,-,oo0I

I

in EXCONif an

overflot¢ occurs in

the eubmatrlx map

Figure 9 Concluded.
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2.1.6 PROCESSOR DATA FLOW

Local data management in TOPO is separated into the performance of two functions;

the sorting of elements connected to a given node, and the generation of the "MFILEs,"

or matrix maps.

The element data stored while sorting the elements is kept temporarily in LDEF and

consists of lowest-referenced node number, element logical type index, number of nodes per

element, element physical type and number, section property indices and connected node

numbers. Since the looping is over element type code (itype in the DEF.xxxx.itype.nnod

datasets), elements with any given lowest-node number are encountered randomly. They

are processed as they are encountered and a directory to the records output to file L25 is

kept in array ISECT. The number of records written to L25 associated with a particular
node is stored in NDUMP.

The size and number of the blocked nodal records on L26 relative to problem parame-

ters determine the adequacy of the core allocation for element sorting calculated in TOPOEX.

If an error occurs because too little space has been allocated in TOPOEX for the sorted ele-

ment data (parameters LMAX. NBLOKS), the element sorting in ELSORT is attempted with

a larger value of LMAX. If the element sort has failed three consecutive times, it is reasoned

that the problem is simply too large for TOPO to handle given available core space and
the routine is aborted.

The generation of the MFILEs, KMAP..nsubs.ksize and AMAP..ic2.isize, hinges on

the management of the CONKOW. CONECT. BLOCK and AVAIL arrays. These arrays are

sized based on trial values for ILMAX. MAXCON. MAXSUB. LT4. LT5. LR4 and LR5. These

values are updated if the MFILE generation fails. If the map generation fails three times,

it is reasoned that the problem is simply too large for TOPO to handle given available

core space and the routine is aborted.

2.1.7 SUBROUTINE AND VARIABLE NAME GLOSSARY

Subroutine Description

ELCON

ELSOKT

ELSUB

EXCON

KMAP

PRECON

TOPOEX

TOPOLD

manage the CONECT array

sort elements according to lowest connected node

find next available submatrix location - BLOCK array

print error message and abort if BLOCK is overfull

construct the KMAP once elements are sorted

construct the AMAP once elements are sorted

main driver routine for construction of maps

startup routine - resets, number of joints, scratch li-

braries
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Variable Routine(s} Description

AVAIL KMAP.PRECON

BLOCK KMAP.PRECON

CONECT KMAP,PRECON

CONRNG KMAP.PRECON

CONROW KMAP.PRECON

IFAIL ELSORT

ILMAX TOPOEX

IPSA ELSORT

ISCT KMAP

ISECT ELSORT

ITYPE KMAP

JPB TOPOEX

KA TOPOEX

KAC ELSORT

KFINAL ELSORT

LB4.LB7 TOPOEX

LDEF ELSORT

LLDEF ELSORT

LMAX TOPOEX

LPJ TOPOEX

LR4 TOPOEX,PRECON

LR5 TOPOEX,KMAP

LRECL TOPOEX.ELSORT

LRNG KMAP,PRECON

LTI-LT8 TOPOEX

LTYPE KMAP

MAXCON TOPOEX

MAXNN TOPOEX

MAXSUB TOPOEX

NBLOKS TOPOEX.ELSORT

NDUMP ELSORT

NELS ELSORT

NETOT TOPOEX

NNODES KMAP,ELSORT

NSCT KMAP

NSE KMAP

NU6 ELSORT

NU7 ELSORT

AVAIL(k) = .TRUE. ifsubmatrix k isavailable

BLOCK(i, j) = submatrix number for CONECT(i. j)

CONECT(i,j) = i-th node connected to CONECT(I,j)

number of joints attached to current joint (incl joint)

CONROW(i) = column number in CONECT of joint i

failure flag

max nodal connectivity allowed

print flag (print if greater than 0)

index of section property dataset entry

directory of records written to NU6

pointer into his dataset for this element type

joints per block for element sort

workspace

nodewise element definition data buffer

sorted element data buffer

core allocation pointers during map generation

space to hold definition of one element

length of DEF.xxxx.itype.nnod record

max elements per block

approx average elements per joint

AMAP block size

KMAP block size

maximum element block size

number of elements attached to current joint

core allocation pointers during map generation

logical element type

max active joints

max nodes per element

max active submatrices

number of blocks joints divided into for element sort

number of dumps per block to NU6 during coarse sort

number of elements in definition record

padded estimate of total number of elements
number of nodes attached to this element

N4 of section property dataset name for this type

element number within this type

scratch library used during coarse element sort

scratch library for final element sort

2.1.8 USAGE GUIDELINES AND EXAMPLES

An example of the use of the KMAP data structure is contained in the section on the

K processor.
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2.2 Processor K

2.2.1 GENERAL DESCRIPTION

Processor K is responsible for expansion (in some cases) and assembly of element

stiffness matrices into the sparse format system stiffness matrix.

K is really a fairly simple processor. Most of the bookkeeping done in K is related

to the distributed storage scheme used for element data. As such, element directories,

name tables, and much extraneous EFIL data need to be stored merely to facilitate the

acquisition of element nodal submatrix data for assembly.

2.2.2 PROCESSOR SYNTAX

This processor follows Testbed command syntax and data management conventions

as described in Reference 2.

2.2.2.1 Processor Resets

Argument Default Meaning

LREC 2240

SA 0

BLIB 1

ELIB 1

HLIB 1

OUTLIB 1

SPDP 1 or 2

NAME K

output matrix record length

Diagnostic print flag - core allocation

Input library number for *.BTAB and DEF.*

Input library number for *.EFIL.*

Input library number for KMAP..nsubs.ksize

Output (matrix) library

Single- or double-precision output matrix

First field of output matrix daatset name

2.2.3 SUBPROCESSORS AND COMMANDS

Not applicable.
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2.2.4 PROCESSOR DATA INTERFACE

2.2.4.1 Processor Input Datasets

• JDFI.BTAB.I.8

• NS

• ELTS.NAME

• *.EFIL.*

• KMAP..nsubs.ksize

2.2.4.2 Processor Output Datasets

• K.SPAR.jdf2 (or name.SPAR.jdf2)

2.2.5 PROCESSOR LOGIC FLOW

Figures 10 through 14 contain logic flowcharts for key subroutines in K: the main

subroutine, subroutine KSMLD which handles RESET processing and some core workspace

allocation, subroutine ASKGO, subroutine ASKEX which directs matrix assembly, and

subroutine SPTRN* which transforms and assembles element stiffness matrices into the

global system stiffness matrix.

It is important to remember that K functions as much more than a matrix assembler.

In particular, K is responsible for the expansion of the SPAR "intrinsic" element stiffness

matrices for beam, plate and solid elements in to their full matrix forms. K also transforms

these matrices from element-local coordinate frames to the global system frames using the

transformation information stored in the EFIL. Lower-level subroutines such as ADDH,

TRIL and TRIL3 perform the expansion of the intrinsic stiffnesses. As such, these are

really element-specific routines embedded in the matrix assembler!

The *TRN* (e.g., SPTRN6, DPTRN3) subroutines are the actual assembly subrou-

tines. A generic example of this type of routine is the flowcharted SPTRN6 subrou-

tine. These subroutines take element stiffness blocks and transfer appropriate, transformed

nodal submatrices into the S workspace for direct assembly into the output matrix buffer

in subroutine ASKEX (or double precision routine DASKEX).

All assembly is performed on an element-by-element basis for a particular node, i.e.,

all elements referencing a certain node and higher nodes (in the sense of the elimination

sequence) are read-in for assembly to that certain node's portion of the system matrix

block. Hence, the outer loop over number of nodes and the inner loop over the attached

elements, as directed by KMAP..nsubs.ksize.
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call INTRO J

I
!orocess RESET commands

and set some core

al 1ocat.t on

( K_ILD 3

I

I perform the assembly( ASKGO )

1

1
I oo. I

Figure 10 K main program logic flowchart.
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oRiG|NAL pAGE tS

OF poOR QUALITY

[
I°''__*'('--', l

1

process RESETco=_lnds

1 ,

I read modelparameters

,[ , .....

finali_u autput

dataset n4uH

n_o.$P4R.n2

JDFI. BTAB. 1.8
imi_Tm_lmii_Jlim _m)_=dmiaiml

install output t
detlset

(_L)

I RETURM t

Figure II KSMLD logicflowchart.
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J

,

rename output )dataset

l, iI RETURN

Figure 12 ASKGO logic flowchart.
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5888

]oop

2088

loop

I tnttla|tze 1

I

1oop over at| nodes in modelDO 5888 ISIAGE-I,JT

l

°,octt, o..d.d_ ]i i
Increment node counter (NO4)

get current node number (JOINT) _

and number of at?.ached elements I _ t

t

1 002.88,-,._. I _ J
I

get number of nodes (NNOOES)

element 1oglcal type (LTYPE)

directory potnter (N$E)

and type tndsx (I1"YPE)

I
incrment R_AP pointer _!

and set EFIL pointers
;i

J
I get appropriate t]__: :_ ...................".EFZL. o record

=@

I tlllm01l Into( OPTRNO, OPSTRN8 )

|

\ .[ GO TO 1808

I
assemble Into $ l

]( OPTRN3. OP$1RN3 )

GO 1"0

780

Figure 13 ASKEX (DASKEX) logic flowchart.
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5888

loop

5000

loop

2990

loop

I expand _ntrfnItc

st tffness

( TRIL3 )

l
inombll tnto $

( *TRN3 )

J

I Ixpsnd and assemble 1stJffr_e$I ( ADDH )

2980 label

expand pla_e/s_ell

elemen_ tntrtnIt¢

stiffness tn SLOC

( TRIL )

I

['"'m_l" '"_o= I( °TRN8 )

I Jncr_en_ K/tIAp po|nter I

Figure 13 Continued.
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5000

loop

I
lend 5000 loop )

L
_r'te lasl _ eeC_e_

i zo dizaDas8

I ,_,u,. ]

i K. SPAR. j#_'2
I

ORIC_N,_L Pf_G_- tS

OF POOR QUALITY

Figure 13 Concluded.
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OR!Gi_AL P_,GE IS

OF POOR QUALITY

loop over each

nodal sul:matrtx tn the

louer trtangle Of the

element mmtrtx

DO 2888 L=I,NNODES

DO 2888 K=I,L

J
tnttitltze uorkspace

arrays GKLTL, HKL

I

l tr:nsfom element Stiffness
HKL TK(transpoee) * GKL * TL

tn loops 1188, 1288

transpose _ransformed [
nodal sul_atrtx If

required (_tAP(N) (8)

!
assemble Submt_rtx 1nee I assemble _.hose d.o.f.

global mttrJx buffer 1 present trite gloOal(1588 Ioc= ) i matrix buffer

I J (1708 10010 )}

.Figure 14 TRN3 (TRN6) logic flowchart.
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2.2.6 PROCESSOR DATA FLOW

Workspace storage isallocatedfor the S array,which holds the expanded, transformed,

nodal submatrix blocks for assembly. The S array issized to hold KSIZE submatrix blocks

dimensioned at NDF by NDF (I_DF = number of degrees-of-freedom per node). KSIZE is

defined in the KMAP..nsubs.ksize. Workspace isalso allocatedfor one block of the output

system matrix, one block (record) of the KMAP..nsubs.ksize, the entirecontents of the NS

data.set,a vector of dataset sequence numbers for all *.EFIL.* datasets, the contents of

the ELTS.NAME dataset, and the longest EFIL record present in the model. All of these

allocationsare made in subroutine KSMLD.

Additional EFIL pointers are used in ASKEX (DASKEX) to assistin decoding the

rather cryptic EFIL internalrecord structure.

2.2.7 SUBROUTINE AND VARIABLE NAME GLOSSARY

Subroutine Description

ADDH

ASKG0

ASKEX(DASKEX)

KSMLD

SPTRN3

SPTRN6

DPTRN3

DPTRN6

DPSTRN3

DPSTRN6

TRIL

TRIL3

assemble beam elements

switches on single/double to callASKEX or DASKEX

main driverfor assembly

startup resets,dataset access,preliminary core alloca-

tion

assemble 3 d.o.f,per node elements with transformation

assemble 6 d.o.f,per node elements with transformation

double precisionoutput version of SPTRN3

double precisionoutput version of SPTRN6

double precisioninput/output version of SPTRN3

double precisioninput/output version of SPTRN6

expand intrinsicelement stiffness(shells)

expand intrinsicelement stiffness(solids)
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Variable Routine(s) Description

CONRNG ASKEX

GKLTL *TRN*

HKL *TRN*

ITYPE ASKEX

LRNG ASKEX

LTYPE ASKEX

MAP *TRN*

NJ4 ASKEX

NN3DES ASKEX

NSE ASKEX

S ASKEX

SLOC ASKEX

number of submatrices attached to current node

transformation workspace = Klocal * Transform

transformation workspace = Kglobal

pointer into N S dataset for this element type
number of elements attached to current node

logical element type

submatrix location vector for assembly

joint counter within current block of KMAP

number of nodes attached to current element

element number within this type

submatrix assembly workspace

local workspace to hold expanded element stiffness

2.2.8 USAGE GUIDELINES AND EXAMPLES

An example of the use of the information contained in the KMAP..nsubs.ksize dataset

to assemble the stiffness matrix of the example model of §1.3 is presented in figure 15.

The assembly of the first two nodal-block rows of the upper triangle of the system matrix

are shown in detail. The interested reader will find the logic flowcharts (see fig. 13) for

subroutines ASKEX and DASKEX to be helpful in understanding this example. The steps in

the illustrated assembly process are as follows:

A) Loop over all nodes in the model. For the first node:

1) Assemble, the nodal-block submatrices for each of the LRNG

elements whose lowest-numbered node (in the sense of the

elimination sequence) is the current node. The assembly

is accomplished by accumulating nodal-block submatrices

from all contributing elements into appropriate slots in the

S workspace. The allocation of these S workspace slots is

done in TOPO and communicated by the MAP array in the

KMAP..nsubs.ksize data structure. Note that negative in-

dices in the MAP array indicate that the transpose of the

element nodal-block submatrix is to be assembled into S.

a) The first element is a (two-node) beam element.

Therefore, three nodal-block submatrices form the

upper triangle of the element matrix. These three

submatrices are moved into slots 1, 2 and 3 in the

S workspace. Since this is the first element, the
nodal submatrices do not need to be accumulated

into the previous contents of the S workspace.
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b) The second element is a triangular plate element

having six nodal blocks in the upper triangleof its

element matrix. These submatrices are accumu-

lated into slots1-6 of the S workspace.

2) After accumulation of the nodal submatrlces from the sec-

ond element's matrix into S, the slotscorresponding to the

firstnodal-block row of the system matrix (i, 3 and 5) are

completely assembled and can be moved to the system ma-

trix record buffer. Once transferred,these blocks in the 3

workspace are no longer needed and are freeto be used for

accumulation of other submatrices.

The above process isrepeated for each of the six nodes in the example model.
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A) for node I ( ISTAGE=I ): connected

elements

element

nodes
MAP array

contents

1
LRNG =2 6

1,2

1,2,5

V
CONRNG =3

1) Assembly of Element Stiffness Matrices"

S

a) Element 1: __

1 2 3 4 5 6 7 8 9 10

expanded matrix
for beam element

(in nodal blocks)

S

b) Element 2: _ _-] [_ expanded matrix

.//------/'r-----q _ for triangular
/ / I_a_l 1(=,5) 1 I plate element

/i I (in nodal blocks)

,=,,, P I ...
workspace:

1 2 3 4 5 6 7 8 9 10

S

2) Transfer to System Matrix Record Buffer:

Index information ._

., _¢1,1, _z,2, I(!,s_! _ System Matrix

_'_ I / Record

SUBMAP = I, 3, 5

workspace: f/ _

* I(2'2) I * I'5'5)I * I(2"5)I I !, I " " "

1 2 3 4 5 6 7 8 9 10

* - Block is now free for accumulation of other nodal submatrices

Figure 15 Example of the system matrix assembly process.
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B) for node 2 ( ISTAGE=2 ): connected

elements

element

nodes

MAP array

contents

2LRNG =3 4

7

2,3

2,5

2,3,6,5

CONRNG = 4

2,3,1

2,6,4

2, 3, 7, 6, 1, 8, 9,

5,-10, 4

I) Assembly of Element Matrices:

S workspace:

element 2

/

I 2 3

/

/

))

element 4 element 7

4 5 6 7 8 9 10

2) Transfer to System Matrix Record Buffer:

/ Index information

---.,.--,,.--..\
System Matrix

Record

S workspace:

SUBMAP - 2, 3, 6, 7

.
I 2 3 4 5 6 7 8 9 10

- Block is now free for accumulation of other nodal submatrices

Figure 15 Concluded.
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2.3 Processor INV

2.3.1 GENERAL DESCRIPTION

Diagonal-scale factoring of a system matrix.

LDL r = A

o A is a sparse system matrix

o L and D are stored as the inverted matrix

The operation of INV reflects a conventional diagonal-scale factoring process. The

only specialization is for the treatment of prescribed degrees-of-freedom where the factoring

process is stopped in a column for the row where a prescribed d.o.f, is encountered and

for succeeding rows. Unfactored coefficients are kept in these untouched positions, and

the forward-reduction process in SSOL is structured to ensure the proper treatment of

linear internal forces associated with these prescribed d.o.f. Thus, the INV and SSOL

processors exhibit interdependence through both the factored matrix data structure and

the specialized treatment of applied displacements.

When interpreting the factored matrix database data structure one needs to be aware

that the nonzero d.o.f, map in the INV record for a particular node actually contains

pointers to those d.o.f, not constrained on the START card (in TAB) that are also not

constrained in the selected CON data. Rows corresponding to constrained d.o.f, are not

present in the factored matrix. As such, knowledge of the basic problem parameters stored

in JDFI.BTAB.1.8 is required to decode fully the factored matrix data structure.

2.3.2 PROCESSOR SYNTAX

This processor follows Testbed command syntax and data management conventions

as described in Reference 2.
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2.3.2.1 Processor Resets

Argument Default Meaning

K K

DZERO 1.0E-05

SPDP 1

CON 1

KLIB 1

KILIB 1

NJMAX 50

LRA 3584

ILIB (KLIB)

First field of input matrix dataset name (will also be

second field of output factored matrix dataset name)

Zero test for diagonal terms

Single (1) or Double (2) precision factored matrix

ncon in CON..ncon dataset

Library containing A matrix

Destination library for factored matrix

Max. number of nodal row blocks in one record of the

factored matrix

Output (factored matrix) dataset record length

Library containing AMAP..ic2.isize

2.3.3 SUBPROCESSORS AND COMMANDS

Not applicable.

2.3.4 PROCESSOR DATA INTERFACE

2.3.4.1 Processor Input Datasets

• JDF1.BTAB.1.8

• CON..ncon

• AMAP..ic2.isize

• K.SPAR.jdf2 (name.SPAR.jdf2)

2.3.4.2 Processor Output Datasets

• INV.K.ncon (INV.name.ncon)

2.3.5 PROCESSOR LOGIC FLOW

Figures 16 through 20 contain logic flowcharts for the ma_or INV subroutines including

the main subroutine, subroutine AFLD, subroutine AFG0, subroutine AFEX (double precision

version DPAFEX) which directs the factoring, and subroutine RED (double precision version

REDDP) which actually performs the elimination calculations. Logic for single or double

precision factoring of matrices is separated by subroutine and based on the precision of

the input matrix. If double precision factors are requested, the input matrix must also be

in double precision. If single precision factors are requested (this is the default) and the

input matrix is double precision, the factors are truncated in REDDP before being written

out in DPAFEX.
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I call INTRO J

I

I

aO the fac%oring I( AFGO ) ,J

1
DONE

call FINis' ')

Figure 16 INV main program logic flowchart.

Revised 1988/11/$ CSM Testbed Matrix Processors 2.3- 3



INV System Matrix Processors

ORIGINAL PAGE IS

OF POOR QUALITY

colllc¢ and apply

RESET arguments
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get size paramoters u

from datu._s _mnm_

A,IMP... and K.$PAR.n2 I _ ,,,_h., 1

Ir-,-_ooo,0o,_.,,,.,L_jI o_. ]
- I

I par_|tton core workspace Ifor factoring

call FIN('KORE')

L

!!
?l
|1

read constraint I COW..ncon ii

case data __:_gmm=-=r=n_=m==-_'-'J_=|

I
I 'ETU'" j

Figure 17 AFLD logic flowchart.
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OR,_,7,J_L P;;GE LS

J

.I

t
factored maCrtx

I
peln_ factoring

s_att$_|CS and

define macros

NLIM_SING and NIJM_NEG

Figure 18 AFGO logic flowchart.
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wtth_n current 4AMP
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318e Io_)
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1
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over connected $u_etrtcls
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O0 1886 ZSUB-I,NSUGS

. . •.++_ <_

Figure 19 AFEX (DPAFEX) logicflowchart.
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Figure 19 Continued.
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Figure 19 Concluded.
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Figure 20 RED (REDDP) logic flowchart.
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Figure 20 Concluded.
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2.3.6 PROCESSOR DATA FLOW

Core workspace is allocated in subroutine AFLD. Workspace for the factoring opera-

tion (referred to as the S workspace in the code) is sized to hold isize nodal submatrices

as determined from the AMAP generation via the name of the AMAP..ic2.isize data.set.

Additional space is allocated for the entire CON..ncon dataset and one record each of the

K.SPAR.jdf2, AMAP..ic2.isize and INV.K.ncon datasets. All of the difficult details of man-

aging submatrix blocks in core have been relegated to the topology analysis in TOPO and,

by the time INV is invoked, are completely coded into the AMAP data structure.

2.3.7 SUBROUTINE AND VARIABLE NAME GLOSSARY

Subroutine Description

AFEX(DPAFEX)

AFGO

AFLD

DECODE

RED(REDDP)

Variable Routine(s}

factorization driver

switches on single/double to call AFEX or DPAFEX

startup resets, dataset access, core allocation, etc.

decodes packed CO N..ncon entries

reduction for current joint

Description

CONRNG AFEX

MAP AFEX

JOINT AFEX

NSUBS AFEX

NZERO AFEX,RED

PIVOTS RED

S AFEX,RED

number connected submatrices in factored matrix

map of nonzero dof for current node

node counter for factoring
number connected submatrices in unfactored matrix

number nonzero dof for current node

diagonal terms for nonzero dof at current joint
factorization work area

2.3.8 USAGE GUIDELINES ANDEXAMPLES

None.
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2.4 Processor SSOL

2.4.1 GENERAL DESCRIPTION

• Calculate solutions x to

Ax=f

o A is a sparse system matrix that has been factored by INV

o f is the aggregate of applied nodal forces and element dis-

tributed loads

o x is the sought-after displacement solution vector

The operation of S SOL reflects a conventional forward reduction and backward substi-

tution operations with specialized treatment of applied displacements. This specialization

is compatible with the operation of INV, where the matrix factorization process is modified

to ensure the presence of the forward-reduction-compatible terms in the factored matrix.

Thus, the INV and SSOL processors exhibit interdependency through both the factored

matrix data structure and the specialized treatment of applied displacements.

2.4.2 PROCESSOR SYNTAX

This processor follows Testbed command syntax and data management conventions

as described in Reference 2.

2.4.2.1 Processor Resets

Argument Default Meaning

K K

KLIB 1

KILIB 1

QLIB 1

EP 1

L1 1

L2 0

CON 1

REAC 1

SET 1

NMAX 0

NUFF 0

(*) - calculated by

First field in dataset name of unfactored matrix; second

field in dataset name of factored matrix

A matrix library

Library containing factored A

Library containing applied forces, displacements, solu-
tion vectors and reaction forces

Flag for residual error calculation

First input vector for solution (1)

Last input vector for solution (I)

Constaint case number (neon)

Flag for computation of nodal reaction forces

Load set number (]set of APPL.FORC.]set.1)

.,Number of vectors to process at a time (1)

Scratch library for residual error analysis

SSOL if required.
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2.4.3 SUBPROCESSORS AND COMMANDS

Not applicable.

2.4.4 PROCESSOR DATA INTERFACE

2.4.4.1 Processor Input Datasets

• JDFI.BTAB.1.8

• APPL.FORC.iset.I

• EQNF.FORC.Iset.i

• APPL.MOTI.iset.I

• INV.K.ncon (INV.name.ncon)

• K.SPAR.jdf2 (narne.SPAR.jdf2)

2.4.4.2 Processor Output Datasets

• STAT.DISP.iset.ncon

• STAT.REAC.iset.ncon

2.4.5 PROCESSOR LOGIC FLOW

Figures 21 through 29 contain logicflowchartsfor the major SSOL subroutines includ-

ing the main subroutine, subroutine DSG0, subroutine DSX (double precisionDSXDP) which

directsallSSOL functions, subroutine UEVAL (double precisionDUEVAL) which directsthe

forward reduction and backward substitutionoperatons, and subroutines FRWRD and BCKSL

(double precisionDFRWRD and DBCKSL, respectively)which actually perform the forward

reduction and back substitution. Logic for singleor double precisionfactored matrices is

separated by subroutine.

The execution of subroutine DSX isdivided into two loops over groups of right-hand-

side (r.h.s.)vectors. The firstloop contains artinner loop to acumulate applied forcesand

displacements into a singler.h.s,block for each load set (see usage guidelines in §2.4.7).

These r.h.s,vector blocks are stored on a scratch libraryfor lateruse. Subroutine UEVAL

isthen invoked to perform the solution operation. Nodal reaction forcesare calculated in

the second r.h.s,vector group loop.

One should note that the factored matrix actually contains partiallyfactored coeffi-

cientsfor off-diagonalterms associated with degrees of freedom at which displacements are

prescribed in APPL.MOTI.iset.I. The forward reduction process is carried out for these

d.o.f,with the r.h.s,vector containing the value of the prescribed displacement instead of

an applied force.The backward substitution process isskipped for prescribed d.o.f..This

procedure resultsin the correct displacements being calculated for non-prescribed d.o.f.

including the effectof internal forcesdue to the prescribed displacements. The displace-

ment solution vector also receivesthe correctprescribed displacement values through this

process. Static nodal reactions are calculated based on the fullsolution vector and the

unconstrained stiffnessmatrix.
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call

INTRO

f
process RESET

c_lqrltlnd6,

a11oca_e core space,

set-ua scratch units

( OSLO }

I
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Figure 21 SSOL main program logic flowchart.
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Figure 22 DSGO logicflowchart.
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Figure 23 DSLD logic flowchart.
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Figure 23 Concluded.
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Figure 24 DSX (DSXDP) logic flowchart.
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Figure 24 Concluded.
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Figure 25 UEVAL (DUEVAL) logic flowchart.
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Figure 25 Concluded.
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Figure 26 FRWRD (DFRWRD) logic flowchart.
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Figure 27 BCKSL (DBCKSL) logic flowchart.
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Figure 28 REAC (DREAC) logic flowchart.
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Figure 20 DSMULT (DDMULT) logicflowchart.
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2.4.6 PROCESSOR DATA FLOW

Core workspace is allocated in subroutine DSLD. Workspace is always allocated for

a directory vector of dataset sequence numbers indicating all applied loading vectors to

be included in a particular solution process. Beyond this directory vector, workspace

is allocated for a vector of task flags indicating which vectors of groups to process, for

scratch blocks of assembled right-hand-side vectors and solution vectors, and for a block of

either the unfactored or factored system matrix, whichever is larger. Any remaining core

workspace is used to store the applied force vectors. If all of these data can fit into the

available core space, execution proceeds. If not, the number of right-hand-side vectors to

be processed in one pass is decremented and allocation is attempted again. If no vectors

can be accommodated in the available workspace along with all other required data, the

processor terminates. Pointers calculated in DSLD are stored in common block/DSAD/and
used in the call to DSX in subroutine DSGO.

A scratch data library (NUFF) is used to hold accumulated right-hand-side vectors and

solution vectors for energy calculation and residual error checking.

2.4.7 SUBROUTINE AND VARIABLE NAME GLOSSARY

Subroutine Description

BCKSL(DBCKSL)

DMLTEX(DDMLTX)

DSGO

DSLD

DSMULT(DD_LT)

DSX(DSXDP)

FRWRD(DFRWRD)

REAC(DREAC)

UEVAL(DUEVAL)

backward substitution

low-level workhorse for DSMULT (DDMULT)

switches on single/double to call DSX or DSXDP

startup resets, dataset access, core allocation, etc.

multiply single-precision (or double-precision) sparse

matrix by double-precision vectors

main solution driver routine

forward substitution

compute static reactions and force errors

solution (forward and back driver)
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Variable Routine(s) Description

CONRNG UEVAL

DFU FRWRD

E REAC

EN UEVAL

EN REAC

ERR REAC

F DSX.REAC

JOINT UEVAL

LK DSMULT

LSDO DSLD,UEVAL.DSMULT

MAP FRWRD,BCKSL

NJ2 UEVAL

NJK DSMULT

NMAX DSLD

NPASS DSLD,DSX

NSUBS DSMULT

NUFF DSLD.REAC.DSX

NZERO UEVAL,FRWRD,BCKSL

U DSX,BCKSL,REAC

UM/DUM BCKSL

number of connected joints

total force or specified displacement

dot product of F and U

energy -- F * U

dot product of K*U and U

error (E - EN)/EN

total force vectors

actual current joint number

matrix buffer pointer

vector process flag

map of nonzero dof at current joint

joint counter within current INV block

joint counter within current block of matrix

number of vectors processed at once

number of passes required to process all vectors

number of connected submatrices

error analysis and reactions scratch library

number of nonzero dof at current joint

solution vectors

result of back reduction (displacement)

2.4.8 USAGE GUIDELINES AND EXAMPLES

A deficiency was found and corrected in the logic of SSOL relating to the use

of prescribed motion components. The deficiency,briefly,is that no check of the

APPL.MOTLIset.I contents is made to ensure that degrees-of-freedom constrained to be

zero in the relevant CON..ncon dataset are indeed zero in the APPE.MOTI.iset.I dataset.

Nonzero values in these positions of APPL.MOTI.iset.I will cause erroneous results to

be calculated in the back-substitution phase of the solution. The existence of an in-

correct solution will be obvious to the user upon examination of the force errors in the

STAT.REAC.iset.ncon dataset. The moral: _Alwa!ls check your reaction,s?"
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3.0 Utility Processors

Various utilityprocessors are availablein the CSM Testbed. The utilityprocessor for

general matrix and vector arithmetic iscalledAUS and isdescribed in thisChapter. AUS

provides various matrix arithmetic functions as well as subprocessors to construct and

modify data tables.Commands to perform the matrix and vector functions are summarized

in Table 3.0-I according to their functional categories. Detailed information about the

implementation of such commands iscontained in the remainder of thissection.
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Command

ARANK

DRANK

GTOL

LTOG

NORM

RECIP

RIGID

SQRT

SQUARE

SUM

UNION

MTRA

MXTY

MXV

PRODUCT

RINV

RPROD

RTRAN

XTY

XTYDIAG

XTYSYM

Table 3.0-I Selected AUS Commands

Command Description

Form vector of pointers to rank source data.set

in ascending order

Form vector of pointers to rank source data.set

in descending order

Transform joint motion, force, or moment components

from global to local joint reference frame

Transform joint motion, force, or moment components

from local joint to global reference frame

Normalize a system vector

Take reciprocal of single or multiblock dataset i.e.,

zi = l./zi

Define rigid body motion

Take square root of single or multiblock data.set it i.e.,

zi = (sign of zi)

Square a single or multiblock dataset i.e., z, = xi 2

Add datasets

Concatenate records of one or more datasets into one

data.set

Matrix Multiply Commands

Transpose a real, multi-block rectangular matrix

Matrix multiply for multi-block data.sets: Z -- xTy

Matrix multiply for multi-block datasets: Z = XY

Matrix multiply: czXc_Y where cz and

cy are real constants and X and Y are system matrices

Matrix inverse for a single-block dataset

Matrix multiply for single-block data.sets: Z - xry

Transpose a single-block data.set

Matrix multiply for multi-block datasets

Matrix multiply for multi-block data.sets when result is

known to be diagonal

Matrix multiply for multi-block datasets when result is

known to be symmetric
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3.1 Processor AUS

3.1.1 GENERAL DESCRIPTION

General matrix and vector arithmetic operations

o Sparse matrix addition (SUM)

C = clA + c2B

O

A:

B:

C:

Sparse or diagonal matrix

Sparse or diagonal matrix

Sparse or diagonal matrix

Sparse matrix & system vector multiplication (PROD)

$ -- ClC2Ax

o

A : Sparse or diagonal matrix

x : System vector (SYSVEC format)

z : System vector (SYSVEC format)

Diagonal matrix result (XTYDIAG)

D = xTy

x : Multi-block dataset

y : Multi-block dataset

D : Diagonal matrix result

Other specialized functions:

ARAN, DRAN - Form sorting index

LTOG, GTOL - SYSVEC coordinate transformations

NORM - Normalize system vector

RIGID - Construct rigid motion vectors

Functions for general vectors:

SQRT - Termwise square-root

SQUARE - Termwise square

RECIP - Termwise reciprocal

MXTY, XTY - z = xry

MXTRAN - z = x r

MXV - z = xy

XTYSYM - B = xry

RINV - Z = X-*
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RPROD - z = xy
RTRAN - z = x r

Functions for substructure generation:

SSID - Set substructure identifier

SSPREP - Prepare substructure definition

SSM, SSK - Generate substructure mass, stiffness

matrices

3.1.2 PROCESSOR SYNTAX

This processor follows Testbed command syntax and data management conventions

as described in Reference 2.

3.1.2.1 Processor Resets

None.

3.1.3 SUBPROCESSORS AND COMMANDS

Command Default Meaning

INLIB 1

OUTLIB 1

DEFINE

MACRO

TABLE

SYSVEC

ALPHA

ELDATA

Input library (default)

Output library (default)

Define correspondence between v. symbol name and its

library and dataset

Set values for CLIP macrosymbols from database enti-

ties

Invoke TABLE subprocessor

Invoke SYSVEC subprocessor

Invoke ALPHA subprocessor

Invoke ELDATA subprocessor

AUS commands such as SUM, PROD, and XTYDIAG take the algebraic form

output_dataset = eomand(input_dataset_l, input_dataset_2)

Commands such as SQRT and NORM, which use only one input dataset take the

form

output_data_et = comand(input_dataset_l )
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3.1.4 PROCESSOR DATA INTERFACE

3.1.4.1 Processor Input Datasets

• JDFI.BTAB.I.8

• User-specifieddatasets

3.1.4.2 Processor Output Datasets

• User-specified data.sets

3.1.5 PROCESSOR LOGIC FLOW

Figures 30 through 32 contain flowchart diagrams for the AUS top-level subroutine,

subroutine PRP2 and subroutine SSUM. Subroutine AUS controls, in detail, the operation of

the AUS processor. Subroutine PRP2 manages the symbolic names of external matrix and

vector data, used to indicate the sources of command-argument data and the destinations of

the resulting data for all AUS functions. Subroutine SSUM implements the SUM command

in AUS and is architecturally similar to subroutine SPROD which implements the PROD
function.

Additional subroutines are quite numerous and implement the myriad additional AUS

processor functions, not all of which are distinctly defined. With little variation, these addi-

tional subroutines retain the same basic architecture employed in SSUM, i.e., each functional

subroutine handles its own argument interpretation, local data management, input-output

management, and invocation of (generally) lower-level computational routines.
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OR!O@iAL ?_"_'_
OF POOR QUALITY

GO TO

1808

T

1080 1,re.be1

GO TO 0880

i

i all FIN(' '}at 5000 label

GO TO

5888

GO TO J5888

I Itnt_altza_tonl
RETURN i

I°"_ =NTo¢ "N®

set NI, NJ, ITYPE _$

# nodes, -I) J

call INTRO ]

I
I Initialize symbol

1;zbIe in RSET

I

I rozdthsproblm I JOFZ.arAa.Z.8 m)deft nit ion datzee?. _mtmmmlJ_

'@

GO TO

1830

Figure 30 AUS main program logicflowchart.
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GO lO

1888

_0 TO

1888

GO TO I
5888

GO TO
5088

%' \

\,/
GO TO

__.__J1825

_a_n_O _ GO TO

NJ-J_oo_s I ]
z_E--_ I I

) 182_ 1aloe1

GO TO I call READER I

2288 1B38 1aloe1

fset va,ue "_$

Figure 30 Continued.
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GO "TO

186E

GO TO

1900

ORIGINAL PAGE IS

OF POOR QUALITY

GO TO

5000

GO TO

5089

..,/

V ' /
GO TO

2200

GO TO

2280

t

I process INLIB,

0UTLIB, DEFINE

or r_ACR0 command

( PRP2 )

set ID to point

to index of command

in list of INLIB, 0UTI.IB

DEFINE and MACRO commands.

°.@
_{I$

[ 2000 I abe 1

' @
I

sot If) to point I

R

to index of command IIn tunctlon llst

@-
loo0 through function argument8

( 00 2460 ZAR=I,NAR )

_o col loci: sc&ling constants

and check d&_a symbols ( PRP2 )

r 22001abel

I set-ul_ oucpu¢dataset TOC tnfo

GO T0

3800

GO TO

3680

Figure 30 Continued.
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7_

GO TO

t888

GO TO

5888

GQ TO

1888

/

GO TO

5888

OF POOR QL_6L;'._y

GO TO

2788

GO TO

5888
X

__ __/

cal 1 SSUM "F_(])

!
J install output

dataset

( LIO )

cal 1 TITL T_)I])

t

c_puted GO TO 2582 label

to select appropriate

function routine

This is for K_SS-2

functions

i

2788 label

I finalize output

Uateset'z TOC

( LeO )

)
GO TO

3888

\t

GO TO

3888

GO TO

3888

_.A=.,.1)

Figure 30 Continued.
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ORIGINAL PAGE IS

OF POOR QUALITY

GO TO

1888

GO TO

5888

3888 label

I
prtnt error message

foe bad function

commanO ( EmSGt )

t
I I

L

5888 lade1 J prtntme=sage"COt6aLETEO"I

J
60 TO 1888

7888 1al_e 1

I

GO TO

7888

Figure 30 Concluded.
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OR/GiEI.o,L P._C=E IS

OF POOR _U,,_M"_

GO TO

888

label 18

] I } label 48
set

NIN- ;NLIB

label 28

l setNU(3)-OUTLIB

lzbel

38

I

J ,e_ n_,, level ']
and value in Z]qACRJ

I

find pr_iousl:,-defined name J

or newt open slot in INTA8 I

I set name and dataset Ispecificat|on in INTAB

)

Figure 31 PRP2 logic flowchart.
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ORIGINAL PAGE IS

OF POOR QUALITY

w

\/

GO TO

888

aces@ Lr_umont

IS naBe of dataso;

ripe. _ Re e

808 la_el

l sot-up TGC entry, i
set source ltbr_ry,

se_ vector ltmtts Lt, L2

1

I

transfer TOC LINE 1to nlme-table TOC MTOC

#

calculate: I

p_ysical record size LR

number of records NR

flr$_ eecord IR

type (ndlcator Ml_P

Figure 31 Concluded.
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OR_'CIN,% PAGE IS

OF POOR QUALITY

I
check type of arguments I

and determine tndsx Of

operation requtred (1-_)

I
get SPARse _atrix

argument's TOC

parameters

!
call FIN('CORE') t

t

I calculate core work=pace

allocatlon based on

arguments' record lengths

t slt-up outputditaset ( LIO )

i
computed GOTO to Invoks

appropriate c_putatlona]

routine

1 $11 SS,SS

2 $21 OS,SS

3 $22 OS,DS

4 S tV SS,V

5 S2V OS,V

8 SVV V,V

[

I updatI outputctataset TOC ( LIO )

I

J
construct vectorl

I TOC parameters

Figure 32 SSUM logic flowchart.
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3.1.6 PROCESSOR DATA FLOW

Internaldata fiow in AUS isquite straightforward. Core workspace isalways allocated

separately by each function, starting from the firstword of KA, according to the specific

needs of the function. For system matrix operations, space is allocated for one block of

the system matrix and the operation proceeds in a block-by-block manner, regardless of

the matrix blocksizeor the amount of unused workspace.

3.1.7 SUBROUTINE AND VARIABLE NAME GLOSSARY

Subroutine Description

AUS

ELDATA

MACDEF

PRP2

$11

$21

$22

SIV

S2V

SVV

SCNT0C

SSMK

SSPREP

SPROD

SSUM

TITL

main levelroutine resets,commands, etc.

input element data

defineCLIP macrosymbol

process INLIB, OUTLIB, DEFINE, or MACRO com-

mands or get dataset names

low-levelsum of two single-precisionsparse matrices

low-levelsum of one single-precisionand one double-

precisionsparse matrices

low-levelsum of two double-precisionsparse matrices

low-levelsum of one single-precisionsparse matrix and

one single-precisioindiagonal matrix

low-levelsum of one double-precisionsparse matrix and

one single-precisiondiagonal matrix

low-levelsum of two single-precisionrectangular matri-

ces

implementation of FIND command

implementation of SSM, SSK commands

implementation of SSPREP command

implementation of sparse matrix multiply function

implementation of SUM command

implementation of ALPHA command
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Variable Routine(s) Description

ERMSGI AUS

ID AUS

IMACR PRP2

IMK AUS

INIT PRP2

INTAB PRP2

IR PRP2

ITAG AUS

IT_PE AUS

KA all

KLASS AUS

LI PRP2

L2 PRP2

LR PRP2

MTOC PRP2

MTYP PRP2

NAR AUS

NIN PRP2

NR PRP2

NU PRP2

ZERO AUS

error message

index of command in function list

macro definition

1 for SSM, 2 for SSK

flag to initialize symbol table

symbol table

1

substructure identifier

type of data for TABLE command

blank common workspace

class of function (0, 1, or 2)

first vector to process

last vector to process
record size

current TOC line

1 or 2 for sparse matrices, 3 for other matrices

number of function arguments

default input library

number of records

vector of libraries for arguments and output

zero test parameter

3.1.8 USAGE GUIDELINES AND EXAMPLES

The functionality of AUS is quite broad in scope. Indeed, AUS capabilities are true to

the notion of "utility." Individual subprocessors are quite powerful, especially in the hands

of art experienced user. Arithmetic operations are invoked through a uniform functional

command format. The merging of AUS and a higher-level procedural language like CLIP

provides a powerful facility for performing iterative simulation algorithms.

One confusing aspect of the AUS functional interface is the dependence of function

specifications on argument datatypes. The most egregious instance of such ambiguity is the

distinction between the PROD, RPROD and MXV functions; all perform matrix-vector

multiplications, but each for a different matrix data storage structure. On the other hand,

the SUM function handles data structure details transparently.

All functions provided by AUS operate on either one (e.g., SQRT, NORM) or two

(e.g., SUM, PROD) arguments. Evaluation of general algorithmic expressions involving

more than one arithmetic operation or function must be executed in succession. The user

must provide scratch workspace in the correct form. Thus, the DEFINE function may be

frequently invoked. No facility, aside from the data library Table of Contents, is provided

for saving data symbol definitions for later use. Table of Contents data are also used to

define parameters like length and number of vectors associated with a data symbol or name.

Without exception, vectors used in AUS must conform to the SYSVEC or blocked-matrix
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(NI by N J) format. Thus, the linear algebraic characteristics of the vector are intimately

tied to its external database representation.

AUS was envisioned to serve as a arithmetic utility for manipulating matrices and

vectors associated with a parent finite-element model since the JDFI.BTAB.1.8 dataset

is always required, regardless of the user's (as yet unspecified} purpose in invoking AUS.

The generality of AUS is compromised by such a restriction, even though many functions

operate on or produce system matrix and vector datasets exclusively. Furthermore, system

matrix operations are restricted to a single, model-intrinsic topology.

Upon thorough, albeit arduous, examination of the true-to-code AUS subroutine

flowchart, one should be convinced that AUS, like virtually all SPAR logic subroutines, is

not coded in a structured manner. Furthermore, and again Uas usual," no extensions to

FORTRAN-IV are employed. These two factors combine to make AUS difficult to modify to

accommodate increased functionality and/or ease of use.

All logic in AUS is not archaic and unstructured, however. In particular, the notion

of a functional da._s, as denoted by the KLASS flag, is very useful for ranking the rela-

tive priority and scope of certain groups of functions. The KLAS3=0 functions (ELDATA,

ALPHA, SYSVEC and TABLE} are used for direct data input to useful external data

structures. Numerical and automated data-generation tasks are handled by the specific

subprocessors. The KLASS=I functions (ZERO, INLIB, OUTLIB, DEFINE and MACRO)

are used to set administrative constants and information. The MACRO function probably

belongs better under KLASS=0, however. One disturbing aspect is that all substructure

generation commands are lumped under the KLASS=I category. The reason for this choice

is not obvious. The KLASS=2 category comprises the real workers. These are the true

arithmetic functions (with minor exceptions for specialized functions like RIGID).

If the class hierarchy in AUS had been rigorously formulated and followed, a highly

structured version might have evolved. The structure would have as its centerpiece the

separation of classes of functions through the use of class-specific cover subroutines. Such

a structure would have enabled a cleaner logic flow and straightforward addition of en-

hancements like a pan-functional local data manager to eliminate repetitive I/O in the
KLASS=2 routines.
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